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It is shown that it is possible by using the lack of synchronization of clocks by 
light signal synchronization in elliptical orbits to test for the dragging of inertial 
frames in Einstein's theory of general relativity. Possible experiments are dis- 
cussed. 

The vast improvement in clock accuracy, the recent launching of 
satellites like the Canadian Anik I, and the planned launching of American 
satellites in the immediate future containing clocks and /or  transponders 
makes possible highly accurate clock synchronization on a world-wide basis. 

In the special theory of  relativity, a fundamental procedure is the 
synchronization of standard clocks at rest in any inertial system using light 
signals (Einstein, 1905; Stachel, 1980). Then, in general, the synchronization 
between the clocks at the end points of a curve depends on the particular 
curve chosen, i.e., the synchronization is path-dependent (Landau and 
Lifshitz, 1951; Rindler, 1969; Cohen and Moses, 1977; Cohen e t  al. ,  1983). 

We will show that for clocks lying on a circle, the lack of synchronization 
due to the dragging of inertial frames is within the realm of current experi- 
mental physics. 

We first review the method of synchronization using closely spaced 
clocks (Landau and Lifshitz, 1951; Cohen et  al. ,  1984). For a general 
stationary metric the "time differential" in the noninertial reference frame 
is not exact. This is most easily seen by changing the form of the metric 
line element 

d s  2 = g ~  d x  ~ d x  ~ 

= g o o ( d x ~  2goj d x  ~ d x i +  g;j d x  i d x  j (1) 
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t o  

ds2=goo(dt+gggo,  dx')2+(g~-go~)go,goj ) dx' dx ~ (2) 

The last term in equation (2) will be recognized as the spatial metric, 
which is, of course, a local concept (Landau and Lifshitz, 1951; Cohen 
et al., 1984). Hence, everywhere on the spatial surface defined by the spatial 
metric, the "time differential" 

"'dt" = dt + gol goi dx ~ (3) 

vanishes. Despite the vanishing of "dt"  everywhere on the spatial surface, 
the integral of "d t "  does not vanish (except in the special case where the 
exterior derivative of "d t "  vanishes). Thus, integration around a closed 
contour OC bounding a region C gives the global result 

At = foc go~go, dx' (4) 

The use of the generalized Stokes theorem transforms this into a surface 
integral 

At = fc d(g~ g~ dx') (5) 

where d denotes the exterior derivative. 
For a uniformly rotating frame in Minkowski space, the line element 

of equation (2) becomes 

d $  2 = "y-E cE( d t  - "y2 c - 2  0)r - 3/2c-2 tor  2 sin 2 0 d~b) 2 

+ dr2+ r 2 d O 2 q  - r2y 2 s i n  2 0 dq52 (6) 

where y-2 = 1 - r2o22c -2 ,  since, using the line element (6), we obtain (assum- 
ing torc-~<< 1) 

At = +(2w)/cEA (7) 

where A is the projected area of the contour on a plane perpendicular to 
the axis of rotation, with the plus or minus sign holding according to whether 
we go around the contour in the direction of or opposite to the direction 
of rotation. 

To discuss the effect of dragging of inertial frames, we make use of 
the Brill and Cohen solution (Brill and Cohen, 1966). They have shown 
that in the equatorial plane of a slowly rotating massive object the metric 
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can be written 

where 

-dr2= - A  2 dt2 + B z dr2+ r2(d(~ "12 dt) 2 

A2= B-2= l - 2 m / r ,  iq= 2J/r3-tOo (8) 

with Wo the rotation rate of  an inertial frame as measured by an observer 
at infinity, and with J the body's angular momentum, J = KM§ (K = 1). 
The synchronization gap expressed in terms of the proper time for orbiting 
satellites in elliptical equatorial orbit is 

AS = 2r 1 +3M/r  - (2KM/r)(R+/r)2w/Wo] (9) 

where the first term in the brackets is the special relativistic one, the second 
term is similar to the gravitational redshift, and the third term arises from 
the dragging of  inertial frames. 

For experimental purposes, it is clearly better to eliminate the lower 
order terms in expression (9). To do this, we send up clocks in satellites in 
both elliptical equivalent geosynchronous and antigeosynchronous orbits. 
We synchronize using light signals, first the clocks in the geosynchronous 
orbits and then by using light signals going the other way for the clocks in 
antigeosynchronous orbits. The simple addition of the synchronization gap 
of both the geosynchronous and antigeosynchronous orbits will isolate the 
effects of  dragging of inertial frames, and with possible clock accuracies of 
one part in 1018 and stability over a 2-year period in the next 5 years, this 
leads to the possibility of experimental determination of the dragging of 
inertial frames (Dehmelt, 1985). Another possibility is the use of  the mil- 
lisecond pulsar as a clock. One revolution in geosynchronous orbit leads 
to a synchronization gap of  approximately 5.76 x 10 -16 sec, which is an order 
of magnitude better than the use of circular orbits. Research is now under 
way to tackle detailed experimental problems. 

To summarize, advances in clock technology lead to the possibility of 
new tests of general relativity. 
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